A General Modular Framework for Audio Source Separation

Alexey Ozerov, Emmanuel Vincent and Frederic Bimbot

VERSAMUS 2010 workshop / IRISA - 18/08/2010

Outline

Introduction

Framework presentation

Experimental illustrations

Conclusion and further work

Introduction

- Classical audio source separation methods are usually adapted to a particular scenario :
 - problem dimensionality ((over)determined, underdetermined, and single-channel case),
 - mixing process characteristics (synthetic instantaneous, anechoic, and convolutive mixtures, and live recorded mixtures),
 - source characteristics (speech, singing voice, drums, bass, noise, ...)

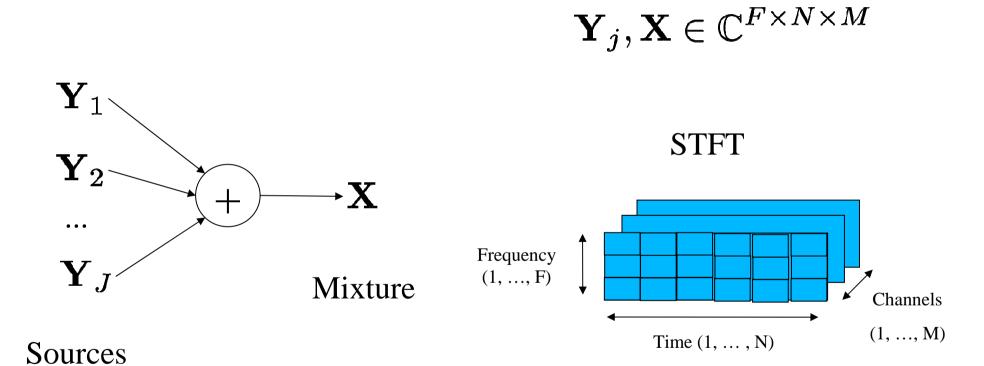
Introduction

- Limitations of classical approaches
 - No common formulation
 - Difficult to adapt a method to a different scenario, it was not originally conceived for
 - Developing a new method for a new scenario is time-consuming :
 - Modeling
 - Algorithm design
 - Programming
 - •

Introduction

- To overcome these issues we would like to develop a new framework that should be
 - general, generalizing existing methods and making it possible to combine them,
 - flexible, allowing easy incorporation of the a priori information about a particular scenario considered,
 - modular, allowing an implementation in terms of software blocks addressing the estimation of subsets of parameters,

Outline


Introduction

Framework presentation

Experimental illustrations

Conclusion and further work

Audio source separation

Flexible model

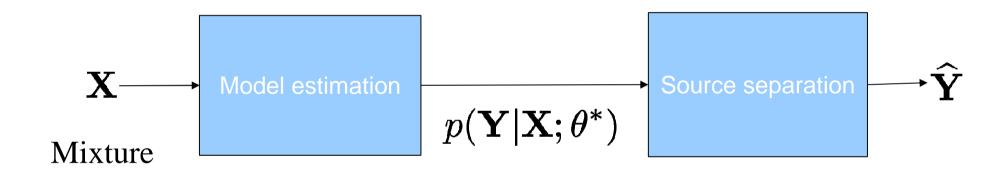
$$\mathbf{Y}_j = \{\mathbf{y}_{j,fn}\}_{f,n} \in \mathbb{C}^{F \times N \times M}$$

$$\mathbf{y}_{j,fn} \in \mathbb{C}^{M}$$

$$\mathbf{y}_{j,fn} \sim \mathcal{N}_c\left(\bar{0}, v_{j,fn} \mathbf{R}_{j,fn}\right)$$

time-varying spatial covariance

time-varying spectral power


$$\theta_j = \{v_{j,fn}, \mathbf{R}_{j,fn}\}_{f,n=1}^{F,N}$$
 source model

$$\mathbf{R}_{j,fn} \in \mathbb{C}^{I imes I}$$

$$v_{j,fn} \in \mathbb{R}_+$$

$$\theta = \{\theta_j\}_{j=1}^J$$
 model

Global scheme

Source separation

$$\mathbf{X} = \{\mathbf{x}_{fn}\}_{f,n} \in \mathbb{C}^{F \times N \times M}$$

$$\hat{\mathbf{y}}_{j,fn} = v_{j,fn} \mathbf{R}_{j,fn} \mathbf{\Sigma}_{\mathbf{x},fn}^{-1}(\theta) \mathbf{x}_{fn}$$

$$\mathbf{\Sigma}_{\mathbf{x},fn}(\theta) \triangleq \sum_{j=1}^{J} v_{j,fn} \mathbf{R}_{j,fn}$$

Maximum a posteriori (MAP) model estimation

$$\mathbf{X} = \{\mathbf{x}_{fn}\}_{f,n} \in \mathbb{C}^{F \times N \times M}$$

$$\theta^* = \arg\min_{\theta \in \Theta} \sum_{f,n} \left[\operatorname{tr} \left(\mathbf{\Sigma}_{\mathbf{x},fn}^{-1}(\theta) \mathbf{x}_{fn} \mathbf{x}_{fn}^H \right) + \log \det \mathbf{\Sigma}_{\mathbf{x},fn}(\theta) \right] - \log p(\theta)$$

Structure

Prior

Spatial Covariance Structures

Time invariant

 $\mathbf{R}_{j,fn} = \mathbf{R}_{j,f}$

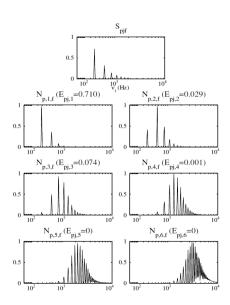
- Rank:
 - Rank-1
 - Full-rank
- Mixing type
 - Linear instantaneous
 - Convolutive
- Adaptive or fixed

$$\mathbf{R}_{j,f} = \left[egin{array}{ccc} h_{f,1}h_{f,1}^* & h_{f,1}h_{f,2}^* \ h_{f,2}h_{f,1}^* & h_{f,2}h_{f,2}^* \ \end{array}
ight] \ \mathbf{R}_{j,f} = \left[egin{array}{ccc} r_{f,11} & r_{f,12} \ r_{f,12}^* & r_{f,22} \ \end{array}
ight]$$

$$\mathbf{R}_{j,f} = \mathbf{R}_{j}$$

Excitation / Filter

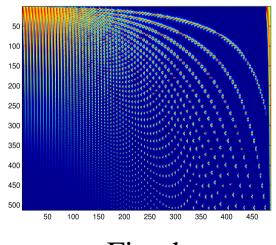
$$v_{j,fn} = v_{j,fn}^{\mathrm{excit}} \times v_{j,fn}^{\mathrm{filt}}$$

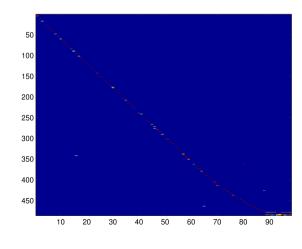

$$v_{j,fn}^{ ext{excit}} = \sum_{k=1}^{K_{ ext{excit}}} p_{j,kn}^{ ext{excit}} e_{j,fk}^{ ext{excit}}$$
 NMF

Activation Characteristic coefficients spectral patterns

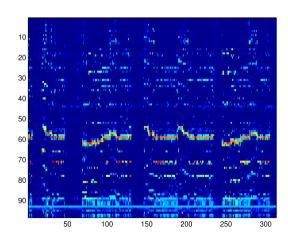
$$v_{j,fn}^{ ext{excit}} = \sum
olimits_{k=1}^{K_{ ext{excit}}} p_{j,kn}^{ ext{excit}} e_{j,fk}^{ ext{excit}}$$

$$v_{j,fn}^{\text{excit}} = \sum\nolimits_{k=1}^{K_{\text{excit}}} \sum\nolimits_{m=1}^{M_{\text{excit}}} h_{j,mn}^{\text{excit}} g_{j,km}^{\text{excit}} \sum\nolimits_{l=1}^{L_{\text{excit}}} u_{j,lk}^{\text{excit}} w_{j,fl}^{\text{excit}}$$

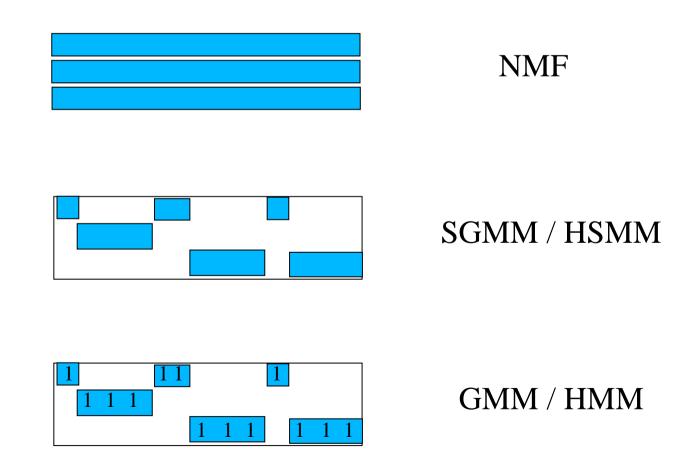

$$\mathbf{V}_{j}^{ ext{excit}} = \mathbf{W}_{j}^{ ext{excit}} \, \mathbf{U}_{j}^{ ext{excit}} \, \mathbf{G}_{j}^{ ext{excit}} \, \mathbf{H}_{j}^{ ext{excit}}$$


$$\mathbf{V}_j = \left(\mathbf{W}_j^{ ext{excit}}\,\mathbf{U}_j^{ ext{excit}}\,\mathbf{G}_j^{ ext{excit}}\,\mathbf{H}_j^{ ext{excit}}
ight)\odot\left(\mathbf{W}_j^{ ext{filt}}\,\mathbf{U}_j^{ ext{filt}}\,\mathbf{G}^{ ext{filt}}\,\mathbf{H}_j^{ ext{filt}}
ight)$$

- Each matrix can be fixed or adaptive
- Example


$$\mathbf{V}_j = \mathbf{W}_j^{ ext{excit}} \, \mathbf{U}_j^{ ext{excit}} \, \mathbf{H}_j^{ ext{excit}}$$

Fixed



Adaptive

Adaptive

Other structures on G or H matrix

Modular implementation

Model

$$\theta = \{\theta_j\}_{j=1}^J$$

$$egin{aligned} heta_j &= \{ heta_j^m\}_{m=1}^9 = \ &= \{\mathbf{R}_j, \mathbf{W}_j^{ ext{excit}}, \mathbf{U}_j^{ ext{excit}}, \mathbf{G}_j^{ ext{excit}}, \mathbf{H}_j^{ ext{excit}}, \mathbf{W}_j^{ ext{filt}}, \mathbf{U}_j^{ ext{filt}}, \mathbf{G}_j^{ ext{filt}} \} \end{aligned}$$

- Generalized Expectation-Maximization algorithm with NMF updates
 - M-step: Loop over all (J x 9) parameters

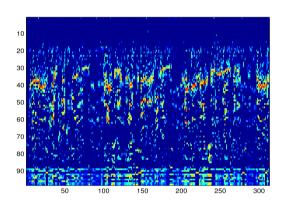
Outline

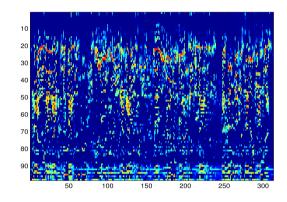
Introduction

Framework presentation

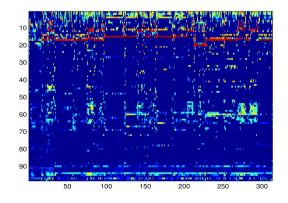
Experimental illustrations

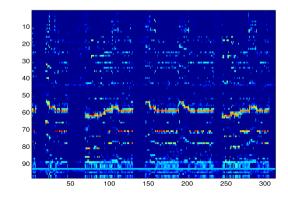
Conclusion and further work

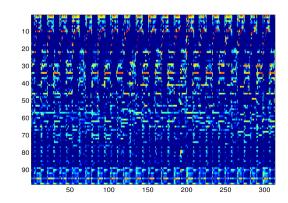

Experimental illustrations


 SiSEC 2010 "Underdetermined speech and music mixtures task" data

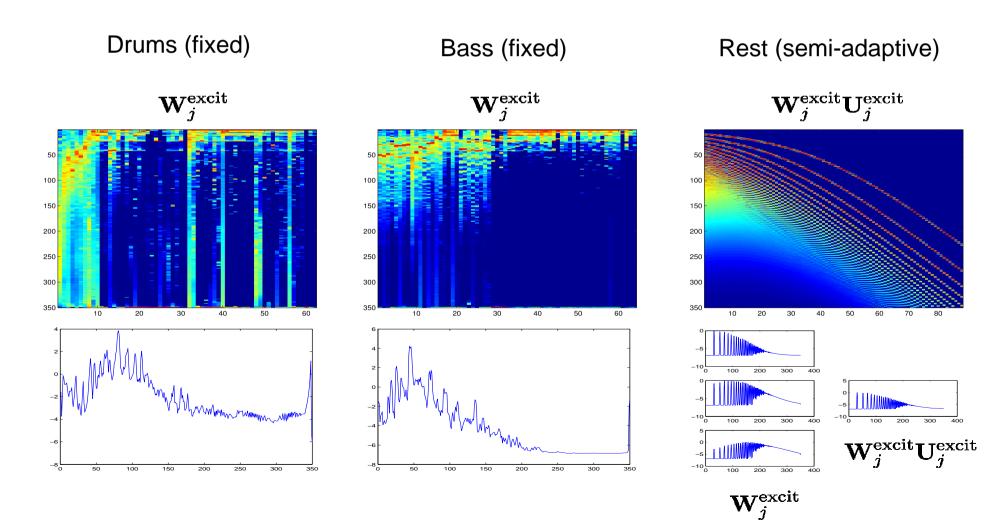
Mixing	instantaneous		synth. convolutif				live recorded			
Sources	speech	music	speech		music		speech		music	
Microphone distance	-	-	$5~\mathrm{cm}$	1 m	5 cm	1 m	$5~\mathrm{cm}$	1 m	$5~\mathrm{cm}$	1 m
baseline (l_0 min. or bin. mask.)	8.6	12.4	0.3	1.4	-0.8	-0.9	1.0	1.4	2.3	0.0
NMF / rank-1 [11]	9.6	18.4	1.0	2.3	-0.6	-0.6	2.0	2.4	3.6	0.3
NMF / full-rank [3]	8.7	17.9	1.2	2.9	-2.3	-0.5	2.2	2.9	3.3	0.7
harmonic NMF / rank-1	10.6	15.1	1.0	2.7	-0.1	0.0	2.2	3.4	2.2	0.6
harmonic NMF / full-rank	10.5	14.3	1.5	3.5	-1.8	-0.2	2.5	3.9	1.5	0.4


Experimental illustrations


Speech



Music



Experimental illustrations

 Drums and bass separation from professionally produced music recordings

Outline

Introduction

Framework presentation

Experimental illustrations

Conclusion and further work

Conclusion

- General flexible framework
 - generalizes existing methods and brings them into a common framework
 - allows to imagine and implement new efficient methods for different audio source separation problems (as illustrated experimentally)
- A statistical implementation of CASA
 - primitive and learned grouping cues are used simultaneously (as opposed to sequentially)
 - primitive grouping cues: harmonicity, spectral smoothness, time continuity, common onset, common amplitude modulation, spectral similarity and spatial similarity

Further work

- Apply for separation of 4 components:
 - Melody, drums, bass, rest
- Add new features to the framework
 - Bayesian priors
 - Extension to more than 2 channels case
 - Time varying spectral covariances
- Make the framework implementation publicly available